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Abstract— Hybrid maps combine metric and topological
information for efficiently managing large-scale environments.
In a feature-based mapping framework, this paper describes the
application of a spectral clustering approach for automatically
detecting the transitions between subsequently traversed local
maps. Contrary to recently proposed approaches, this algorithm
considers each individual map feature as a node of a graph
whose edges link two nodes if they are simultaneously observed.
Thus, given a sequence of observations, an auxiliary graph
is incrementally built whose edges carry non-negative weights
according to the locality of the features. Given a feature, its
locality defines the set of features that has been observed
simultaneously with it at least once. At each execution of the
mapping approach, the feature-based graph is split into two
subgraphs using a normalized spectral clustering algorithm.
If the graph partition is validated, the algorithm determines
that the robot is moving into a new area and a new local
map is generated. We have tested the proposed approach
in real environments where features are obtained using 2D
laser sensors or vision. Experimental results demonstrate the
performance of the proposal.

I. INTRODUCTION

Autonomous navigation is a fundamental ability for mo-
bile robots which requires the integration of different mod-
ules. Among them, self-localization and environment map-
ping are two essential ones, as they are needed at different
levels, from low-level control to higher-level strategic de-
cision making or navigation supervision. It is well known
that to guarantee bounded errors on its pose estimates,
the robot must rely on sensors which can perceive stable
environment features. Thus, if the robot manages a spatially
consistent map of the environment, it could apply a map-
based localization approach to obtain a correct estimation of
its pose [1]. On the other hand, if the robot pose is exactly
known, it could build a consistent environment map with the
perceived data. The mapping and localization tasks are then
intimately tied together [2], and they must be concurrently
solved. The problem of the simultaneous localization and
mapping (SLAM) has been extensively addressed by the
robotic community in the last years.

Conventional approaches to SLAM rely on a metric,
probabilistic representation of the robot pose and map. These
metric approaches attempt to represent the spatial distribution
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of the perceived environment, commonly in the form of
a feature map or an occupancy grid. Although they have
been successfully employed to map relatively large-sized
environments, the main limitation of these techniques is re-
lated to the excessive computational complexity associated to
these mapping processes. The classical alternative to metric
maps is to model the environment using a topological map.
Topological maps attempt to capture the spatial connectivity
of the environment by representing it as a graph with edges
connecting the nodes that designate distinctive places in
the environment [3]. These maps typically require reduced
storage requirements, but they also usually lack the neces-
sary information to localize arbitrarily (can only localize to
nodes in the topological graph). Besides, while probabilistic
methods have been extensively investigated for performing
inference over the space of metric maps, it is not the same
case for topological maps. As a significant exception, the
probabilistic topological maps (PTMs) [4] is a sample-based
representation that approximates the posterior distribution
over topologies given available sensor measurements.

In order to deal with large, complex environments, the
internal representation acquired by the robot can be orga-
nized as a hierarchy of maps which represent the whole
environment at different levels of abstraction. Typically,
these hierarchical representations consists of two layers: a
metric map and a higher-level topological map. The hybrid
approach usually attaches a local metric map to the nodes
of a graph-based environment representation, where edges
represent coordinates transformation between nodes. Thus,
the complexity can be bounded within each local map.
The problem is then to define what part of the mapped
environment is associated to each topological node. Simhon
and Dudek [5] proposed a strategy to create new maps in
the presence of feature-rich regions or islands of reliability.
Geometrical methods such as generalized Voronoi graphs [6]
have been also used to segment the metric space represen-
tation. Recently, Zivkovic et al [7] and Blanco et al [8]
have proposed to represent the base-level map as a graph,
and to decompose it into nodes using efficient approximate
solutions to the normalized graph cut criterion. This graph-
partitioning method can be generalized for dividing a graph
into a variable number of subgraphs [8]. The main disadvan-
tage of these approaches is that the whole base-level map
must be built in advance. An alternative solution is to apply
this partitioning algorithm periodically to the acquired local
map [9]. In other hierarchical approaches, this partitioning
process works on-line. Thus, in the atlas framework, Bosse et
al [10] proposed to create a new map when the uncertainty of
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the robot location grows above some limit. The hierarchical
SLAM [11] integrates new features into local maps until
a given number is reached. Both partitioning approaches
can generate different submaps of a given environment area
depending on the robot trajectory across it. In a recent
work, Brunskill et al [12] have proposed a new algorithm
to automatically decompose a map into submap segments
using a spectral clustering approach.

In the framework of a hybrid metric/topological approach
to the SLAM problem, this paper describes a partition
algorithm which can be used to cluster detected features into
groups that give rise to precise local maps. These maps can
be built using any kind of sensor, as the only information that
the algorithm needs is the set of observed features and the
association between them. Assuming that the robot is always
located at one environment area, the proposed approach has
been integrated into a SLAM algorithm which estimates
the robot pose and the local map structure at metric level
by means of a feature-based stochastic mapping using an
extended Kalman filter (EKF). Map management and data
association are then addressed by the SLAM algorithm. This
paper is closely related to the previous approaches of Blanco
et al [8], Zivkovic et al [7] and Brunskill et al [12]. Like these
proposals, our approach decompose the acquired local map
into submaps using a spectral clustering algorithm. However,
meanwhile all these approaches consider robot poses as the
nodes of the local graph to divide, in our proposal the
nodes of the local graph are environment features. Besides,
all approaches employ different methods to compute the
similarity matrix.

Finally, it must be noted that the proposed partitioning ap-
proach must be integrated into a hybrid mapping framework.
When the robot is turning back or when traversing a loop
for the second time, it can reaches a previously visited local
map. In these situations, a relocation approach must be used
to confirm the revisiting of the local map. In this way, the
unbounded growth of the topological representation when the
robot moves through loops repeatedly will be avoided [14].

The rest of the paper is organized as follows: after briefly
discussing the main aspects of the normalized spectral clus-
tering theory in Section II, Section III presents the proposed
algorithm for feature-based map partitioning. Experimental
results in Section IV demonstrate the efficiency and precision
of the proposed method. Finally, in Section V, we draw the
main conclusions of this study and outline future research
directions.

II. NORMALIZED SPECTRAL CLUSTERING

A. Graph Notation

Let G = (N,E) be an undirected, weighted graph with
node set N = {n1, ...nn} and where each edge between
two nodes ni and nj has associated a non-negative weight
wij ≥ 0. The weighted adjacency matrix or similarity matrix
of the graph G is the matrix W = (wij)i,j=1,...n. As the
graph is undirected, this matrix is symmetric (wij = wji).

Fig. 1. Covisibility Graph building process. Each node is annotated with
the number of observations of the corresponding feature. Edges represent
locality of features and their values correspond to the times they have been
observed simultaneously (these values have not been drawn).

The degree of a node ni ∈ N is defined as

di =
n∑

j=1

wij (1)

Then, the degree matrix D is defined as the diagonal matrix
with the degrees {di}n

i=1 on the diagonal. Given a subset
A ⊂ N , |A| denotes the number of nodes in A and vol(A)
is a measure of the size of A defined by the weights of its
edges (vol(A) =

∑
i∈A di).

A subset A ⊂ N is connected if any two nodes in A can
be joined by a path such that all intermediate nodes also lie
in A. The subsets A1, ...Ak are a partition of the graph G if
(Ai ∩Aj)i�=j = ∅ and A1 ∪ ... ∪Ak = N .

B. Normalized Spectral Clustering Algorithm

Given the graph G = (N, E), according to the proposal
of Shi and Malik [13], the normalized spectral clustering
algorithm for graph partitioning consists of the following
steps:

1) Solve for the two eigenvectors with the smallest eigen-
values of the generalized eigenproblem

Lv = λDv (2)

where L is the unnormalized graph Laplacian matrix
defined by L = D −W .

2) Let V ∈ Rnx2 be the matrix containing the vectors v1

and v2 as columns.
3) Let yi ∈ R2 be the vector corresponding to the i-th

row of V . Cluster the points {yi}n
i=1 into clusters C1

and C2 with the k-means algorithm.

Thus, the second smallest eigenvector of the generalized
eigenproblem is the real valued solution to the normalized cut
problem. The only reason that it is not necessary the solution
to the original problem is that the second constraint on y that
yi takes on two discrete values is not automatically satisfied.
Relaxing this constraint is what makes this optimization
problem tractable in the first place.
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Fig. 2. Similarity Matrices associated to two Covisibility Graphs.

III. GRAPH-BASED ENVIRONMENT REPRESENTATION

A. The Covisibility Graph

The proposed approach works in the EKF-SLAM frame-
work, being the environment description based on feature
maps. Detected and matched landmarks are used to build an
auxiliary graph of robot observations, called the Covisibility
Graph (CG). In this graph, observations are represented as
nodes and those features that has been observed from the
same pose of the robot are connected by edges. Given a
sequence of robot observations, the CG is incrementally built
in each step (see Fig. 1). Here, the critical problem is to
match different observations zt and z′t, taken at time steps t
and t′. The EKF-SLAM algorithm solve this issue in the Data
Association stage, where the observations gathered at each
time step are compared to those features stored in the map.
Using the set of landmarks updated in the SLAM process,
after the Data Association stage, the correspondence problem
is solved. Thus, the CG building process is able to take
advantage of using a batch data association method, and a
reliable multiple data tracking in cluttered environments is
achieved [15]. Therefore, this graph is obtained from the
set of features given in the update stage of the EKF-SLAM
algorithm, and contrary to previous approaches [8] [12] [7]
these nodes are related to landmarks and no additional
information about the robot pose is directly added.

The CG represents the observed landmarks, taken at dif-
ferent time steps and robot poses, and their relationship. As it
has been aforementioned, this relation between observations
is the locality of a feature, defined as the set of features that
have been seen simultaneously with it at least once [16]. This
locality is represented in the CG as edges connecting those
features. Once this auxiliary graph is built, the edge weights
must be computed in order to define the similarity matrix.
For each node in the graph, ni is the number of observations
of the feature F t

i up to time t. If two features F t
i and F t

j

have been seen in the same observation at time t, an edge is
created between them or if it exists, i.e. both landmarks have
been previously observed at the same time, the edge value
aij is increased. In order to compute an average value related
to the locality of features, the covisibility rate is defined as:

CRij =
aij

min(ni, nj)
(3)

Fig. 3. This example illustrate two subsets A, B ⊂ V to show the concepts
of cut and assoc. It can be noted how association involves not only the
intergroup cohesion between A and B but the intragroup cohesion of the
subset A (see text).

here, the edge value is divided by the minimum number
of observations of the corresponding features. As it can be
seen, the minimum possible value of the covisibility rate is
zero when two features have not been seen simultaneously,
and the maximum value is one, when two features always
have been observed simultaneously, at least one of them. So
the covisibility rate is within the range [0, 1]. This is our
similarity function that allows to compute the adjacency or
similarity matrix. This matrix is symmetric, non-negative and
band diagonal. This last property can be seen in Figure 2.
Next subsections explain how this matrix is used to find the
map partition.

B. Graph Partitioning

Once the CG is built and the similarity matrix is computed,
the aim is to split the graph in order to minimize the lost
of information in the map partition. This problem can be
stated as to find a partition of the graph where the edges
between different groups have a very low weight and the
edges within the same cluster have high values. The degree
of dissimilarity between these two clusters can be computed
as the total weight of the edges between them, that is, the
cut for two disjoint subsets A, B ⊂ V is:

cut(A, B) =
∑

i∈A,j∈B

wij (4)

The optimal partitioning of a graph is achieved when the
cut value is minimized. This leads to cuts of small sets of
isolated nodes in the graph. Instead of using this criteria, Shi
and Malik [13] proposed the minimization of the normalized
cut (Ncut). The Ncut value is defined as:

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(A, B)
assoc(B, V )

(5)

where:

assoc(A, V ) =
∑

u∈Av∈V

wuv (6)

4177



Fig. 4. Ncut values during the mapping process. If it is thresholded, a
non-optimal solution can be taken due to the presence of local minimum.

is the total connection from nodes in A to all nodes in the
graph. This definition of the disassociation between clusters
fulfil both the intergroup (the strength of the edges between
clusters) and the intragroup cohesion (the strength of the
edges in the same cluster). Note that this definition satisfy:

assoc(A, V ) = cut(A,B) + assoc(A,A) (7)

as it is illustrated in Figure 3.
So, minimizing Ncut values allows to avoid isolated

partitions. Although this problem is NP-hard, the statistics
literature contains many variants of algorithms to approxi-
mate the normalized cut of a graph. Spectral clustering is
one of the most efficient and robust. In our case, we have
employed the algorithm presented in Section II.

C. Validation of the Graph Partition

The proposed approach build an auxiliary graph (CG)
incrementally from the observations gathered by the robot
during the localization and mapping process. During the
CG building process, while the robot moves through the
environment, the spectral clustering is run in order to find
a suitable partition of the map and the transition to a new
area. As it has been aforementioned, the objective function
is the minimum normalized cut of the graph [8]. Thus, the
best partition is given when the minimum Ncut value is
found. However, the aim of our approach is to provide a
map partition while the robot is moving. If the Ncut value
is thresholded, it is possible to fall in a local minima and
a wrong partition would be taken (see Figure 4). Another
possibility is to study the set of eigenvalues of the similarity
matrix. These eigenvalues generally correspond to clusters in
the graph [12]. In our case, the spectral clustering algorithm
is applied to the map that is being built to find a partition of
the graph into only two clusters in order to detect a new area.
Therefore, we should evaluate the magnitude of the second
eigenvalue (eigv2). In order to define a more robust criterion,
these two values are combined. The map partition is valid if
the following condition holds

Ncut ≤ Ncutmin & eigv2 ≤ eigv2min (8)

where Ncutmin and eigv2min are constants. The thresholds
for submap generation for the Ncut value and the second
eigenvalue have been set experimentally to 0.3 and 0.25,
respectively. As it is shown in Figure 5, the same local
maps are created even when the robot follows different
trajectories through the same environment. In this Figure
the information included in the CG is based on feature
maps, being these features obtained using a curvature-based
environment description from laser scan data [17]. However,
the next section shows how this algorithm is able to be used
for any sort of features and sensor.

IV. EXPERIMENTAL RESULTS

The proposed feature-based map partitioning algorithm
has been extensively tested in real indoor scenarios for
laser rangefinder and stereo cameras. In this section, just
one experiment for each type of sensor is shown. The first
one is depicted in Figure 6. It has been carried out in a
Pioneer 2AT robot platform from ActivMedia equipped with
a SICK LMS200. The field of view is 180o in front of
the robot and up to 8 m distance. The range samples are
spaced every half a degree, all within the same plane. The
set of natural features used in the EKF-SLAM algorithm,
and subsequently in the submap generation process, has been
extracted using a curvature-based algorithm for laser scan
data segmentation [17]. The whole segmentation process
consists of two stages. The first stage divides the laser
scan into clusters of consecutive range readings according
to a distance criterion. Then, the second stage calculates
the curvature function associated to each cluster and uses
it to split each cluster into a set of straight-line and curve
segments.

This test is composed of 1500 scans of an office-like
environment where the robot was driven through a room
and a corridor (see Figure 6), whose trajectory return to a
previous area through a different way. The ground-truth is
shown in Figure 6a. It has been obtained using the Mapper3
software from ActivMedia Robotics, whose process is based
on offline scanmatching techniques applied over the complete
set of scans. The local maps generated by the proposed
approach are shown in Figure 6b. Here, features belonging to
different submaps are depicted in different colors. Some map
partition events during the trajectory are shown in Figures 6c-
e.

Finally, similar results can be achieved using this submap
generation process for vision. In Figure 7 some frames for
different trajectories in an indoor environment are shown.
These experiments has been conducted using the aforemen-
tioned platform which is also equipped with a stereoscopic
camera. This stereo system is a STH-MDCS from Videre
Design: a compact, low-power colour digital stereo head
with an IEEE 1394 digital interface. It consists of two
1.3 megapixel, progressive scan CMOS images mounted
in a rigid body, and a 1394 peripheral interface module,
joined in an integral unit. Visual landmarks used in the map
partitioning process are associated to distinguished regions
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Fig. 5. Several tests in the same environment following different trajectories. The spectral clustering algorithm generates the same submaps in each
experiment. When the robot leaves the room and enter in the corridor the thresholds values for Ncut and the second eigenvalue are satisfied.

extracted from a stereo vision system using a perception-
based grouping mechanism [18]. In these tests, a new submap
is generated when the robot leaves the room (see Figure 7).
In order to evaluate the robustness of the proposal, several
trials have been conducted on this environment. It can be
noted that the algorithm always splits the map at the same
location, as can be seen in Figures 7a-c. These partitions
correspond to the obtained in the laser experiment in the
same environment, as is shown in Figures 6c-e (point B).

V. CONCLUSIONS AND FUTURE WORK

In this paper a spectral clustering technique for efficient
graph partitioning has been used for submaps generation in
a hybrid framework. Unlike other approaches, this proposal
is based on feature maps without constraints about the sort
of features and the sensor used. Experiments with both laser
range finder and vision have been successfully conducted.
Our proposal builds a covisibility graph, where nodes are
related to environment features and not to robot poses, as
it has been employed by previous proposals [7] [8] [12].
A near-optimal solution to partition this graph is achieved
using spectral clustering. Experimental results show that the
definition of the covisibility rate is a suitable measure which
allows to compute the similarity matrix. This measure is
based on the concept of feature locality, those features that
are visible from the same robot pose.

The set of submaps generated provides a topological repre-
sentation of the environment being an important issue to arise
a hybrid approach for localization and mapping. Regarding
the graph partition, combined thresholds have been used but
an adaptive criterion according to the environment will be
considered.
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Fig. 6. Experiment in a real indoor environment with a laser range finder. a) Environment layout; b) detected submaps; c) submaps generated during
the trajectory up to the third cut, d) and e) following partitions in the trajectory. Features have been obtained using a curvature-based laser scan data
segmentation algorithm [17].
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Fig. 7. Some experiments using vision. Three experiments in the same scenario in different viewing conditions. Visual landmarks detected are represented
as ellipses, and the correspondence between landmarks in different frames with the corresponding index. A new area is detected at the same location as
for the laser experiment. a) new area detected in frame #70, b) in frame #104 and c) in frame #71.
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